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ABSTRACT

Simplicial depth is a way to measure how deep a point is among a set of points. E�cient

algorithms to compute it are important to the usefulness of its applications, such as in

multivariate analysis in statistics. A straightforward method takes O(n

d+1

) time when the

points are in d-dimensional space. We discuss an algorithm that takes O(n

2

) time when the

points are in three-dimensional space, and we generalize it to four-dimensional space with

a time complexity of O(n

4

). For spaces higher than four-dimensional, there are no known

algorithms faster than the straightforward method.

1 Simplicial depth

A simplex in d-dimensional Euclidean space E

d

is the set of points that are convex combi-

nations of d + 1 a�nely independent points; that is, if the points are p

1

; p

2

; : : : ; p

d+1

, they

bring about the simplex
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A simplex is a line segment in E

1

, a triangle in E

2

, and a tetrahedron in E

3

.

It is customary to say that a set of points in E

d

are in general position if any d+1 points

in the set are a�nely independent. Let P be a set of n points in general position in E

d

;

take every d + 1 distinct points from P and they uniquely identify a simplex in E

d

; let S

P

be the set of all such simplices; then, jS

P

j = (

n

d+1

). Let �(p; P ) denote the simplicial depth

of a point p with respect to a set P , de�ned by

�(p; P ) = jfs 2 S

P

: p 2 sgj:

For example, if p is outside the convex hull of P , then �(p; P ) = 0, and if p is a vertex of

the convex hull of P , then �(p; P ) = (

n�1

d

). When p is in P , the following identity holds:

�(p; P ) = �(p; P � fpg) +

 

jP j � 1

d

!

:

1



Boros and F�uredi [1] have shown that for any set P of n points in E

2

, there exists a

point p such that �(p; P ) = n

3

=27 + O(n

2

); furthermore, there is a set Q of n points such

that for all points p in the plane, �(p;Q) < n

3

=27 + n

2

. Liu [5] observes that simplicial

depth is invariant under nonsingular a�ne transformations; we will use this property in the

development of algorithms.

Simplicial depths have applications in statistics [2, 5, 6]; and e�cient algorithms to

compute them are of central concern. A straightforward method for d-dimensional simplicial

depth is to generate all the simplices and then to count the number of containments; since

there are O(n

d+1

) simplices, it takes O(n

d+1

) time in the real RAM model of computation

[7]. However, in one-dimensional space, simplicial depth can be computed in O(n) time by a

partition algorithm; in two-dimensional space, simplicial depth can be computed in O(n lg n)

time [3, 4, 8].

2 Computing simplicial depth in E

3

2.1 Counting tetrahedra not containing p

Rousseeuw and Ruts have brie
y described an algorithm that computes simplicial depth in

spaces higher than two-dimensional (page 523, [8]). We �nd it di�cult to understand their

argument; let us elaborate.

Their idea is as follows. For each p

i

in P ,

� let �

i

be the plane that passes through p and is orthogonal to (p

i

� p);

� project P to �

i

; let �

i

(q) denote the image of q on �

i

; note that �

i

(p

i

) = �

i

(p).

The argument is that if a triangle 4�

i

(p

j

)�

i

(p

k

)�

i

(p

l

) does not contain p, then the tetrahe-

dron 4p

i

p

j

p

k

p

l

does not contain p. We can use the algorithm for two-dimensional simplicial

depth in [8] to count the triangles in �

i

, i = 1; 2; : : : ; n, that do not contain p, and the sum

of these counts corresponds to the number of tetrahedra that do not contain p.

We need some terminology to explain the di�culty we have encountered. Assume the

tetrahedron 4p

i

p

j

p

k

p

l

does not contain p; there are four planes in E

3

de�ned by any three

vertices of the tetrahedron; these planes divide the exterior of the tetrahedron into 14 cells:

� four cells adjacent to the faces of the tetrahedron,

� six cells adjacent to the edges of the tetrahedron, and

� four cells adjacent to the vertices of the tetrahedron.

If p is in a cell adjacent to a face of the tetrahedron, for example, the triangle 4p

i

p

j

p

k

,

then p

l

is \invisible" to p (blocked by the tetrahedron). When the tetrahedron is projected

to the plane �

l

, the triangle 4�

l

(p

i

)�

l

(p

j

)�

l

(p

k

) in fact does contain p. But when the

tetrahedron is projected to the other three planes, �

i

, �

j

, and �

k

, the corresponding triangles

do not contain p. Therefore, the tetrahedron is counted three times by the above method.

Similarly, if p is in a cell adjacent to a vertex of the tetrahedron, the tetrahedron is

counted three times.
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However, if p is in a cell adjacent to an edge of the tetrahedron, the tetrahedron will be

counted four times. We can not �nd a way to account for this discrepancy.

2.2 Counting tetrahedra containing p

Gil, Steiger, and Wigderson [3] have described an algorithm that computes simplicial depth

in three-dimensional space; however, there is a slight 
aw. We describe a modi�cation.

Let P be a set of n points in general position in E

3

, and let p be a point in general

position with P . Lemmas 1 and 2 are from [3].

Lemma 1. Let p

0

i

be any point on the ray from p through p

i

; the tetrahedron 4p

i

p

j

p

k

p

l

contains p if and only if the tetrahedron 4p

0

i

p

j

p

k

p

l

contains p.

Let �

i

be the point where the ray from the origin with the direction (p

i

� p) intersects the

unit sphere about the origin; let

^

�

i

be the point where the ray from the origin with the

direction (p � p

i

) intersects the unit sphere about the origin; that is,

^

�

i

is antipodal to �

i

.

By Lemma 1, the tetrahedron 4p

i

p

j

p

k

p

l

contains p if and only if the tetrahedron 4�

i

�

j

�

k

�

l

contains the origin. Assuming �

i

, �

j

, and �

k

are not antipodal to one another, the spherical

triangle 4

s

�

i

�

j

�

k

is the area on the surface of the unit sphere bounded by the short arcs of

the great circles passing any two points in f�

i

�

j

�

k

g.

Lemma 2. The tetrahedron4�

i

�

j

�

k

�

l

contains the origin if and only if the spherical triangle

4

s

�

i

�

j

�

k

contains

^

�

l

.

Let P

0

be f�

1

; �

2

; : : : ; �

n

g. By Lemmas 1 and 2, we can count, for i = 1; : : : ; n, the number

of spherical triangles with vetices in P

0

� f�

i

g that contain

^

�

i

, and �(p; P ) is equal to the

sum of these counts. Later we will describe a relabeling of the points in P

0

. With the new

labeling in e�ect, let �

l

be a plane that contains the origin and separates �

l

from �

i

, �

j

, and

�

k

; and let �

0

l

be a plane that is parallel to �

l

, but is at some distance from the origin. The

radial projection of a point q (q 6= O) onto �

0

l

, denoted by �

0

l

(q), is the intersection of �

0

l

and the line Oq; note that the image of a radially projected spherical triangle is a triangle

in the plane, and �

0

l

(q) = �

0

l

(q̂). Trivially,

Lemma 3. The spherical triangle 4

s

�

i

�

j

�

k

contains

^

�

l

if and only if, in the plane �

0

l

, the

triangle 4�

0

l

(�

i

)�

0

l

(�

j

)�

0

l

(�

k

) contains �

0

l

(

^

�

l

).

The algorithm proceeds as follows. We need a point x in general position with P

0

[ fOg;

the line Ox is the axis of rotation. Let � be the plane that contains O and is orthogonal

to the axis of rotation; project P

0

to �, and let �

0

; �

1

; : : : ; �

n�1

be the polar angles of the

projected images in ascending order, 0 � �

i

< 2�; relabel the points in P

0

so that the indices

start at 0 and �

i

corresponds to �

i

. In what follows, we will assume \wrapping around" of

indices (indices modulo n) and \wrapping around" of angles (adding 2� to negative angles,

and subtracting 2� from angles that are equal to or greater than 2�).

On the plane �, let �̂

i

denote the point on the unit circle with the polar angle �

i

+ �;

that is, �̂

i

is antipodal to �

i

. Suppose �̂

i

is angularly between �

j

and �

j+1

; let �

i

be the
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minimum of (�

i+1

��

i

) and (�

j+1

� �̂

i

). Then, de�ne the dividing plane �

i

to be the plane

that contains both the axis of rotation and the line on � that goes through the origin and has

the polar angle �

i

+ �

i

=2. Each dividing plane �

i

, i = 0; 1; : : : ; n� 1, divides the unit sphere

into two hemispheres, and the hemisphere containing

^

�

i

is designated the upper hemisphere;

�

i

is chosen so that �

i

is put into the lower hemisphere as much as possible without moving

other points into the upper hemisphere.

The algorithm moves from one dividing plane to the next. At each �

i

, it counts the

spherical triangular containments of antipodal points on the upper hemisphere; by Lemma 3,

it can instead count the triangular containments on the plane �

0

i

. Suppose �

i

; �

i+1

; : : : ; �

j

are

in the upper hemisphere of �

i�1

; after the algorithm is done with �

i�1

, it moves to �

i

. During

this transition, �

i

moves to the lower hemisphere, and some points, �

j+1

; �

j+2

; : : : ; �

j+k

, move

to the upper hemisphere. The algorithm then counts, in the plane �

0

i

,

(a) for each point in f�

0

i

(

^

�

j+k+1

);�

0

i

(

^

�

j+k+2

); : : : ;�

0

i

(

^

�

i�1

)g (the old antipodal points), the

number of triangles containing it that have one or more of their vertices in f�

0

i

(�

j+1

); : : :,

�

0

i

(�

j+k

)g (the new primary points), while the rest of the vertices are in f�

0

i

(�

i+1

); : : : ;�

0

i

(�

j

)g

(the old primary points); and

(b) for �

0

i

(

^

�

i

) (the new antipodal point), the number of triangles containing it that have

all of their vertices in f�

0

i

(�

i+1

); : : : ; �

0

i

(�

j

);�

0

i

(�

j+1

); : : : ;�

0

i

(�

j+k

)g (all the primary points).

Then the algorithm moves on to �

i+1

. It does the above for all the n dividing planes.

Lemma 4. Each tetrahedron containing the origin will be counted twice by the algorithm.

Proof. Since the point x is in general position with P

0

[fOg, for each tetrahedron containing

the origin, the axis of rotation Ox intersects with two of its faces. For each of these two

faces, its three vertices can not be separated from the other vertex of the tetrahedron by any

of the dividing planes, and therefore, their projected images do not contain the antipodal of

the other vertex of the tetrahedron. For each of the other two faces of the tetrahedron, it

will be counted excatly once, as soon as

1. the other vertex of the tetrahedron is in the lower hemisphere, but one or more of its

three vertices have just moved to the upper hemisphere so that all of them are in the

upper hemisphere, or

2. the other vertex of the tetrahedron has just moved to the lower hemisphere, while the

three vertices are all in the upper hemisphere. 2

The above algorithm counts a spherical triangle containing an antipodal point when the

con�guration makes the transition to the upper hemisphere. The 
aw of the algorithm in

[3] is in that it treats �

0

di�erently: it counts all containments in �

0

, not just the new ones

as if rotating from �

n�1

to �

0

; some of the containments in �

0

will move out and reappear

later, and then they are counted again; therefore, some tetrahedra are counted three times.

Except for this di�erence, the two algorithms work in the same way, and they take O(n

2

)

time; see [3] for details.
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3 Computing simplicial depth in E

4

We can easily adapt the algorithm in Section 2.2 to four-dimensional space. Lemmas 1, 2,

and 3 can be generalized to E

4

. Furthermore, we need two points, x

1

and x

2

, in general

position with P

0

[ fOg; the plane de�ned by O, x

1

, and x

2

is the axis of rotation. And � is

the plane that contains O and is orthogonal to the axis of rotation. The dividing hyperplane

�

i

is similarly de�ned: it contains O, x

1

, x

2

, and the points in � with the polar angle

�

i

+ �

i

=2. The algorithm then proceeds the same way except that it counts tetrahedra in

hyperplanes �

0

i

that contain antipodal points, instead of counting triangles in planes.

Lemma 5. Each four-dimensional simplex containing the origin will be counted twice by the

algorithm.

Proof. For each simplex containing the origin, the axis of rotation intersects with three

of its faces, and thus each of these faces will not be separated from the other vertex of the

simplex by any of the dividing hyperplanes. For each of the other two faces of the simplex,

it will be counted exactly once. 2

There are O(n) antipodal points in step (a), and there is one antipodal point in step (b);

in both steps, there are O(n) primary points. Therefore the algorithm needs O(n

2

) time

for each of the antipodal points in a dividing hyperplane, and O(n

3

) time for each of the

n dividing hyperplanes, and O(n

4

) time in total, while the straightforward method takes

O(n

5

) time.

The same idea can be used to compute simplicial depth in E

d

, d > 4, where the problem

is similarly turned into computing O(n

2

) simplicial depths in E

d�1

. The resulting algorithm

takes O(n

2d�4

) time; however, the straightforward algorithm is at least as good.
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